Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Sci Rep ; 12(1): 20470, 2022 Nov 28.
Article in English | MEDLINE | ID: covidwho-2151087

ABSTRACT

The urban environment influences human health, safety and wellbeing. Cities in Africa are growing faster than other regions but have limited data to guide urban planning and policies. Our aim was to use smart sensing and analytics to characterise the spatial patterns and temporal dynamics of features of the urban environment relevant for health, liveability, safety and sustainability. We collected a novel dataset of 2.1 million time-lapsed day and night images at 145 representative locations throughout the Metropolis of Accra, Ghana. We manually labelled a subset of 1,250 images for 20 contextually relevant objects and used transfer learning with data augmentation to retrain a convolutional neural network to detect them in the remaining images. We identified 23.5 million instances of these objects including 9.66 million instances of persons (41% of all objects), followed by cars (4.19 million, 18%), umbrellas (3.00 million, 13%), and informally operated minibuses known as tro tros (2.94 million, 13%). People, large vehicles and market-related objects were most common in the commercial core and densely populated informal neighbourhoods, while refuse and animals were most observed in the peripheries. The daily variability of objects was smallest in densely populated settlements and largest in the commercial centre. Our novel data and methodology shows that smart sensing and analytics can inform planning and policy decisions for making cities more liveable, equitable, sustainable and healthy.


Subject(s)
Deep Learning , Animals , Humans , Automobiles , Cities , City Planning , Ghana
2.
Sci Total Environ ; 803: 149931, 2022 Jan 10.
Article in English | MEDLINE | ID: covidwho-1373255

ABSTRACT

Economic and urban development in sub-Saharan Africa (SSA) may be shifting the dominant air pollution sources in cities from biomass to road traffic. Considered as a marker for traffic-related air pollution in cities, we conducted a city-wide measurement of NOx levels in the Accra Metropolis and examined their spatiotemporal patterns in relation to land use and meteorological factors. Between April 2019 to June 2020, we collected weekly integrated NOx (n = 428) and NO2 (n = 472) samples at 10 fixed (year-long) and 124 rotating (week-long) sites. Data from the same time of year were compared to a previous study (2006) to assess changes in NO2 concentrations. NO and NO2 concentrations were highest in commercial/business/industrial (66 and 76 µg/m3, respectively) and high-density residential areas (47 and 59 µg/m3, respectively), compared with peri-urban locations. We observed annual means of 68 and 70 µg/m3 for NO and NO2, and a clear seasonal variation, with the mean NO2 of 63 µg/m3 (non-Harmattan) increased by 25-56% to 87 µg/m3 (Harmattan) across different site types. The NO2/NOx ratio was also elevated by 19-28%. Both NO and NO2 levels were associated with indicators of road traffic emissions (e.g. distance to major roads), but not with community biomass use (e.g. wood and charcoal). We found strong correlations between both NO2 and NO2/NOx and mixing layer depth, incident solar radiation and water vapor mixing ratio. These findings represent an increase of 25-180% when compared to a small study conducted in two high-density residential neighborhoods in Accra in 2006. Road traffic may be replacing community biomass use (major source of fine particulate matter) as the prominent source of air pollution in Accra, with policy implication for growing cities in SSA.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Environmental Monitoring , Meteorology , Nitrogen Dioxide/analysis , Nitrogen Oxides/analysis , Particulate Matter/analysis
SELECTION OF CITATIONS
SEARCH DETAIL